Rapid embedding of tissues in Lowicryl K4M for immunoelectron microscopy.

Author:

Altman L G,Schneider B G,Papermaster D S

Abstract

Lowicryl K4M (K4M) was recently introduced as an embedding medium for immunocytochemistry at the electron microscope level (BL Armbruster, E Carlemalm, R Chiovetti, RM Garavito, JA Hobot, E Kellenberger, W Villiger (1982):J Microsc 126:77 and E Carlemalm, M Garavito, W Villiger (1982):J Microsc 126:123). While earlier protocols of fixation and embedding required 4-6 days, the present method has reduced the processing time by accelerating both dehydration of tissues and polymerization of K4M so that tissues can be prepared for sectioning within 4 hr. The immunocytochemical labeling density was quantitated in order to determine relative antigen preservation in tissues embedded by the accelerated protocol as compared to slower K4M embedding techniques and to tissues embedded in glutaraldehyde-cross-linked bovine serum albumin (BSA). Thin sections of Bufo marinus kidney were labeled with rabbit antibody to Na+,K+ATPase alpha chain catalytic subunit isolated from B. marinus kidney microsomes (M Girardet, K Geering, JM Frantes, D Geser, BC Rossier, JP Kraehenbuhl, C Bron (1981):Biochemistry 20:6684). B. marinus retinas were labeled with rabbit anti-opsin. After fixation in paraformaldehyde(3%)-glutaraldehyde(3%), tissues were washed in buffer, dehydrated in 50, 75, and 90% dimethyl-formamide (DMF, 10 min each); K4M:DMF, 1:2 (15 min); K4M:DMF, 1:1, (20 min); K4M (25 min); K4M (30 min) at room temperature and transferred in fresh K4M to BEEM capsules for exposure to ultraviolet light (GE 15 watt, Black-lite, 10 cm, 45 min or less) at 4 degrees C. Thin sections were labeled successively with antibody, biotinylated sheep anti-rabbit F(ab')2 and avidin-ferritin. Ferritin labeling densities were determined by point counting. High labeling densities were observed with both antibodies, equaling or exceeding levels of labeling by slower protocols or embedment in BSA.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3