Affiliation:
1. Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Iran
Abstract
The orbital elements of each planet are the eccentricity and the direction of the apsidal line of its orbit defined by the ecliptic longitude of either of its apses, i.e., the two points on its orbit where the planet is either furthest from or closest to the Earth, which are called the planet’s apogee and perigee. In the geocentric view of the solar system, the eccentricity of Venus is a bit less than half of the solar one, and its apogee is located behind that of the Sun. Ptolemy correctly found that the apogee of Venus is behind that of the Sun, but determined the eccentricity of Venus to be exactly half the solar one. In the Indian Midnight System of Āryabhaṭa (b. ad 476), the eccentricity of Venus is assumed to be half the solar one, and also the longitudes of their apogees are assumed to be the same. This hypothesis became prevalent in early medieval Middle Eastern astronomy (ad 800–1000), where its adoption resulted in large errors of more than 10° in the values for the longitude of the apogee of Venus adopted by Yaḥyā b. Abī Manṣūr (d. ad 830), al-Battānī (d. ad 929), and Ibn Yūnus (d. ad 1007). In Western Islamic astronomy, it was used in combination with Ibn al-Zarqālluh’s (d. ad 1100) solar model with variable eccentricity, which only by coincidence resulted in accurate values for the eccentricity of Venus. In late Islamic Middle Eastern astronomy (from ad 1000 onwards), Āryabhaṭa’s hypothesis gradually lost its dominance. Ibn al-A‘lam (d. ad 985) seems to have been the first Islamic astronomer who rejected it. Late Eastern Islamic astronomers from the middle of the thirteenth century onwards arrived at the correct understanding that the eccentricity of Venus should be somewhat less than half of the solar one. Its most accurate medieval value was measured in the Samarqand observatory in the fifteenth century. Also, the values for the longitude of the apogee of Venus show a significant improvement in late Middle Eastern Islamic works, reaching an accuracy better than a degree in Khāzinī’s Mu‘tabar zīj, Ibn al-Fahhād’s ‘Alā’ī zīj, the Īlkhānī zīj, and Ulugh Beg’s Sulṭānī zīj.
Subject
Physics and Astronomy (miscellaneous),Astronomy and Astrophysics,Arts and Humanities (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A SURVEY OF ABU ʾL-WAFĀʾ’S SOLAR AND STELLAR OBSERVATIONS;Journal of Astronomical History and Heritage;2023-06-01
2. Textual Genres and Visual Representations in the Astral Sciences1;Routledge Handbook on the Sciences in Islamicate Societies;2023-01-09
3. Practices of Celestial Observation in the Islamicate World1;Routledge Handbook on the Sciences in Islamicate Societies;2023-01-09
4. An analysis of Ibn al-Shāṭir’s star table;Journal for the History of Astronomy;2022-05
5. Ibn al-Fahhād and the Great Conjunction of 1166 AD;Archive for History of Exact Sciences;2019-07-08