Artemisia lactiflora Extracts Prevent Inflammatory Responses of Human Macrophages Stimulated with Charcoal Pyrolysis Smoke

Author:

Kooltheat Nateelak12ORCID,Chujit Kamonrat1,Nuangnong Kanjana1,Nokkaew Nuttikarn3,Bunluepuech Kingkan42,Yamasaki Kenshi5,Chatatikun Moragot12ORCID

Affiliation:

1. School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand

2. Research Excellence Center for Innovation and Health Products,Walailak University, Nakhon Si Thammarat, Thailand

3. School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand

4. School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand

5. Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan

Abstract

Artemisia lactiflora, a Chinese-origin plant, has been reported to have unique phytochemicals responsible for its medicinal properties. The growth of the agricultural industry emits air pollution, which has adverse effects on health. There are limited scientific reports on the biological activities of A. lactiflora. Studies on its activities and mechanisms may provide insight into its use in medicinal purposes to treat those health problems and conditions. In this study, leaves of A. lactiflora were extracted and fractioned with solvents of different polarities. Total phenolics, total flavonoids DPPH scavenging, ABTS•+ scavenging, and cytotoxicity of A. lactiflora were assessed. Anti-inflammatory activities were evaluated by pre-treating macrophages with extract or fractions then induced inflammatory response by coconut shell pyrolysis smoke. Inflammatory responses were assessed by measuring pro-inflammatory genes expression and pro-inflammatory cytokines secretion. Among all extract and fractions of A. lactiflora, butanol fraction has the highest phenolic, flavonoid, and DPPH scavenging activity. All extract and fractions significantly down-regulated pro-inflammatory genes expression ( RelA, TNF, IL6) and decreased pro-inflammatory cytokines secretion (TNF-α, IL-6), p < 0.0001, compared with pyrolysis smoke-induced macrophages. The ethyl acetate fraction showed the highest anti-inflammatory activity in decreasing pro-inflammatory cytokines secretion. These results may prove the anti-inflammatory activities of A. lactiflora through the inhibition of the NF-κB-dependent pathway. Taken together, this study first reported the anti-inflammatory activities of A. lactiflora. Thus, the plant can be used to prevent and treat inflammatory responses caused by highly oxidative pyrolysis smoke released from the re-utilization of agro-industrial leftovers.

Funder

Individual Research Grant, Research Institute for Health Sciences, Walailak University

Publisher

SAGE Publications

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3