Cassia Abbreviata Enhances Glucose Uptake and Glucose Transporter 4 Translocation in C2C12 Mouse Skeletal Muscle Cells

Author:

Kamga-Simo F. D. Y.1ORCID,Kamatou G. P.2,Ssemakalu C.3,Shai L. J.1

Affiliation:

1. Department of Biomedical Sciences, Tshwane University of Technology, Private Bag Pretoria, South Africa

2. Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag, Pretoria, South Africa

3. Cell Biology Research Unit, Department of Biotechnology, Vaal University of Technology, Private Bag, Pretoria, South Africa

Abstract

Background. This study aim at assessing C. abbreviata aqueous extracts for its potential to exhibit anti-diabetic activity in skeletal muscle cells. In addition to the toxicological and glucose absorption studies, the action of C. abbreviata extracts on some major genes involved in the insulin signaling pathway was established. Methods. The in vitro cytotoxic effects C. abbreviata was evaluated on muscle cells using the MTT assay and the in vitro glucose uptake assay conducted using a modified glucose oxidase method described by Van de Venter et al. (2008). The amount of GLUT-4 on cell surfaces was estimated quantitatively using the flow cytometry technique. Real time quantitative PCR (RT-qPCR) was used to determine the expression of GLUT-4, IRS-1, PI3 K, Akt1, Akt2, PPAR-γ. Results. Cytotoxicity tests revealed that all extracts tested at various concentrations were non-toxic (LC50 > 5000). Aqueous extracts of leaves, bark and seeds resulted in a dose-dependent increase in glucose absorption by cells, after 1 h, 3 h and 6 h incubation period. Extracts of all three plant parts had the best effect after 3 h incubation, with the leaf extract showing the best activity across time (Glucose uptake of 29%, 56% and 42% higher than untreated control cells after treatment with 1 mg/ml extract at 1 h, 3 h and 6 h, respectively). All extracts, with the exception 500 µg/ml seed extract, induced a two-fold increase in GLUT-4 translocation while marginally inducing GLUT-10 translocation in the muscle cells. The indirect immunofluorescence confirmed that GLUT-4 translocation indeed occurred. There was an increased expression of GLUT-4, IRS1 and PI3 K in cells treated with insulin and bark extract as determined by the RT-qPCR. Conclusion. The study reveals that glucose uptake involves GLUT-4 translocation through a mechanism that is likely to involve the upstream effectors of the PI3-K/Akt pathway.

Funder

National Research Foundation, South Africa

Publisher

SAGE Publications

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3