Imaging mitochondrial complex I activation during a vibrotactile stimulation: A PET study using [18F]BCPP-EF in the conscious monkey brain

Author:

Fang Jingwan1,Ohba Hiroyuki2,Hashimoto Fumio2ORCID,Tsukada Hideo2,Chen Feiyan1,Liu Huafeng3

Affiliation:

1. Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou, China

2. Central Research Laboratory, Hamamatsu Photonics K.K., Shizuoka, Japan

3. State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou, China

Abstract

In order to evaluate the capability of 2- tert-butyl-4-chloro-5-{6-[2-(2-[18F]fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF), a novel positron emission tomography (PET) probe for mitochondrial complex I (MC-I) activity, to assess neuronal activation, an activation PET study was conducted in the conscious monkey brain with a continuous unilateral vibrotactile stimulation. PET scans with [15O]H2O, [18F]BCPP-EF, or 2-deoxy-2-[18F]fluoroglucose ([18F]FDG) were conducted under: (1) resting conditions; (2) a continuous vibration stimulation; (3) a continuous vibration stimulation after 15-min pre-vibration; and (4) a continuous vibration stimulation after 30-min pre-vibration. The contralateral/ipsilateral ratio (CIR) in the somatosensory cortex showed significant increases in the uptake of [15O]H2O, [18F]BCPP-EF, and [18F]FDG with the vibration stimulation. The longer pre-vibration duration induced significantly lower CIR in regional cerebral blood flow (rCBF) measured using [15O]H2O, whereas it did not affect the CIR in [18F]BCPP-EF or the regional cerebral metabolic rate of glucose (rCMRglc) measured using [18F]FDG 30–60 min after the injection. These results suggest that the [18F]BCPP-EF response in the later phase of scans was not influenced by the increase in rCBF, indicating the capability of [18F]BCPP-EF to detect acute changes in MC-I activity induced by neuronal activation. However, the metabolic shift from glycolysis to oxidation was not observed under the stimulation used here.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3