Systematic validation of structural brain networks in cerebral small vessel disease

Author:

Dewenter Anna1ORCID,Gesierich Benno1,ter Telgte Annemieke23,Wiegertjes Kim2ORCID,Cai Mengfei2,Jacob Mina A2,Marques José P4,Norris David G4ORCID,Franzmeier Nicolai1,de Leeuw Frank-Erik2,Tuladhar Anil M2,Duering Marco125ORCID

Affiliation:

1. Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany

2. Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands

3. VASCage – Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria

4. Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands

5. Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland

Abstract

Cerebral small vessel disease (SVD) is considered a disconnection syndrome, which can be quantified using structural brain network analysis obtained from diffusion MRI. Network analysis is a demanding analysis approach and the added benefit over simpler diffusion MRI analysis is largely unexplored in SVD. In this pre-registered study, we assessed the clinical and technical validity of network analysis in two non-overlapping samples of SVD patients from the RUN DMC study (n = 52 for exploration and longitudinal analysis and n = 105 for validation). We compared two connectome pipelines utilizing single-shell or multi-shell diffusion MRI, while also systematically comparing different node and edge definitions. For clinical validation, we assessed the added benefit of network analysis in explaining processing speed and in detecting short-term disease progression. For technical validation, we determined test-retest repeatability. Our findings in clinical validation show that structural brain networks provide only a small added benefit over simpler global white matter diffusion metrics and do not capture short-term disease progression. Test-retest reliability was excellent for most brain networks. Our findings question the added value of brain network analysis in clinical applications in SVD and highlight the utility of simpler diffusion MRI based markers.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3