A review of bioeffects induced by focused ultrasound combined with microbubbles on the neurovascular unit

Author:

Chen Si1,Nazeri Arash2,Baek Hongchae3,Ye Dezhuang1,Yang Yaoheng1,Yuan Jinyun1,Rubin Joshua B45,Chen Hong16

Affiliation:

1. Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA

2. Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA

3. Imaging Institute and Neurological Institute, Cleveland Clinic, Cleveland Clinic, Cleveland, OH, USA

4. Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA

5. Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA

6. Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, USA

Abstract

Focused ultrasound combined with circulating microbubbles (FUS+MB) can transiently enhance blood-brain barrier (BBB) permeability at targeted brain locations. Its great promise in improving drug delivery to the brain is reflected by a rapidly growing number of clinical trials using FUS+MB to treat various brain diseases. As the clinical applications of FUS+MB continue to expand, it is critical to have a better understanding of the molecular and cellular effects induced by FUS+MB to enhance the efficacy of current treatment and enable the discovery of new therapeutic strategies. Existing studies primarily focus on FUS+MB-induced effects on brain endothelial cells, the major cellular component of BBB. However, bioeffects induced by FUS+MB expand beyond the BBB to cells surrounding blood vessels, including astrocytes, microglia, and neurons. Together these cell types comprise the neurovascular unit (NVU). In this review, we examine cell-type-specific bioeffects of FUS+MB on different NVU components, including enhanced permeability in endothelial cells, activation of astrocytes and microglia, as well as increased intraneuron protein metabolism and neuronal activity. Finally, we discuss knowledge gaps that must be addressed to further advance clinical applications of FUS+MB.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3