Evaluation of single bolus, dual-echo dynamic susceptibility contrast MRI protocols in brain tumor patients

Author:

Stokes Ashley M1ORCID,Bergamino Maurizio1,Alhilali Lea2,Hu Leland S3,Karis John P2,Baxter Leslie C13,Bell Laura C1ORCID,Quarles C Chad1

Affiliation:

1. Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA

2. Neuroradiology, Southwest Neuroimaging at Barrow Neurological Institute, Phoenix, AZ, USA

3. Department of Radiology, Division of Neuroradiology, Mayo Clinic Arizona, Phoenix, AZ, USA

Abstract

Relative cerebral blood volume (rCBV) obtained from dynamic susceptibility contrast (DSC) MRI is adversely impacted by contrast agent leakage in brain tumors. Using simulations, we previously demonstrated that multi-echo DSC-MRI protocols provide improvements in contrast agent dosing, pulse sequence flexibility, and rCBV accuracy. The purpose of this study is to assess the in-vivo performance of dual-echo acquisitions in patients with brain tumors (n = 59). To verify pulse sequence flexibility, four single-dose dual-echo acquisitions were tested with variations in contrast agent dose, flip angle, and repetition time, and the resulting dual-echo rCBV was compared to standard single-echo rCBV obtained with preload (double-dose). Dual-echo rCBV was comparable to standard double-dose single-echo protocols (mean (standard deviation) tumor rCBV 2.17 (1.28) vs. 2.06 (1.20), respectively). High rCBV similarity was observed (CCC = 0.96), which was maintained across both flip angle (CCC = 0.98) and repetition time (CCC = 0.96) permutations, demonstrating that dual-echo acquisitions provide flexibility in acquisition parameters. Furthermore, a single dual-echo acquisition was shown to enable quantification of both perfusion and permeability metrics. In conclusion, single-dose dual-echo acquisitions provide similar rCBV to standard double-dose single-echo acquisitions, suggesting contrast agent dose can be reduced while providing significant pulse sequence flexibility and complementary tumor perfusion and permeability metrics.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3