An enriched environment improves long-term functional outcomes in mice after intracerebral hemorrhage by mechanisms that involve the Nrf2/BDNF/glutaminase pathway

Author:

Jia Peijun12,Wang Junmin1,Ren Xiuhua1,He Jinxin1,Wang Shaoshuai1,Xing Yinpei1,Chen Danyang1,Zhang Xinling1,Zhou Siqi1,Liu Xi3,Yu Shangchen1,Li Zefu1,Jiang Chao4,Zang Weidong1,Chen Xuemei1,Wang Jian1ORCID

Affiliation:

1. Department of Anatomy, School of Basic Medical Sciences, , Zhengzhou University, Zhengzhou, China

2. School of Life Sciences, Zhengzhou University, Zhengzhou, China

3. Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

4. Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Abstract

Post-stroke depression exacerbates neurologic deficits and quality of life. Depression after ischemic stroke is known to some extent. However, depression after intracerebral hemorrhage (ICH) is relatively unknown. Increasing evidence shows that exposure to an enriched environment (EE) after cerebral ischemia/reperfusion injury has neuroprotective effects in animal models, but its impact after ICH is unknown. In this study, we investigated the effect of EE on long-term functional outcomes in mice subjected to collagenase-induced striatal ICH. Mice were subjected to ICH with the standard environment (SE) or ICH with EE for 6 h/day (8:00 am–2:00 pm). Depressive, anxiety-like behaviors and cognitive tests were evaluated on day 28 with the sucrose preference test, tail suspension test, forced swim test, light-dark transition experiment, morris water maze, and novel object recognition test. Exposure to EE improved neurologic function, attenuated depressive and anxiety-like behaviors, and promoted spatial learning and memory. These changes were associated with increased expression of transcription factor Nrf2 and brain-derived neurotrophic factor (BDNF) and inhibited glutaminase activity in the perihematomal tissue. However, EE did not change the above behavioral outcomes in Nrf2−/− mice on day 28. Furthermore, exposure to EE did not increase BDNF expression compared to exposure to SE in Nrf2−/− mice on day 28 after ICH. These findings indicate that EE improves long-term outcomes in sensorimotor, emotional, and cognitive behavior after ICH and that the underlying mechanism involves the Nrf2/BDNF/glutaminase pathway.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3