Vasomotor influences on glymphatic-lymphatic coupling and solute trafficking in the central nervous system

Author:

Goodman James R12ORCID,Iliff Jeffrey J13

Affiliation:

1. Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA

2. Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA

3. Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA

Abstract

Despite the recent description of meningeal lymphatic vessels draining solutes from the brain interstitium and cerebrospinal fluid (CSF), the physiological factors governing cranial lymphatic efflux remain largely unexplored. In agreement with recent findings, cervical lymphatic drainage of 70 kD and 2000 kD fluorescent tracers injected into the adult mouse cortex was significantly impaired in the anesthetized compared to waking animals (tracer distribution across 2.1 ± 4.5% and 23.7 ± 15.8% of deep cervical lymph nodes, respectively); however, free-breathing anesthetized mice were markedly hypercapnic and acidemic (paCO2 = 64 ± 8 mmHg; pH = 7.22 ± 0.05). Mechanical ventilation normalized arterial blood gases in anesthetized animals, and rescued lymphatic efflux of interstitial solutes in anesthetized mice. Experimental hypercapnia blocked cervical lymphatic efflux of intraparenchymal tracers. When tracers were injected into the subarachnoid CSF compartment, glymphatic influx into brain tissue was virtually abolished by hypercapnia, while lymphatic drainage was not appreciably altered. These findings demonstrate that cervical lymphatic drainage of interstitial solutes is, in part, regulated by upstream changes in glymphatic CSF-interstitial fluid exchange. Further, they suggest that maintaining physiological blood gas values in studies of glymphatic exchange and meningeal lymphatic drainage may be critical to defining the physiological regulation of these processes.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3