Interplay between Notch and p53 promotes neuronal cell death in ischemic stroke

Author:

Balaganapathy Priyanka1,Baik Sang-Ha12,Mallilankaraman Karthik1,Sobey Christopher G3,Jo Dong-Gyu2,Arumugam Thiruma V124

Affiliation:

1. Department of Physiology, Yong Loo Lin School Medicine, National University of Singapore, Singapore, Singapore

2. School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea

3. Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia

4. Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore

Abstract

Stroke is the world's second leading cause of mortality, with a high incidence of morbidity. Numerous neuronal membrane receptors are activated by endogenous ligands and may contribute to infarct development. Notch is a well-characterized membrane receptor involved in cell differentiation and proliferation, and now shown to play a pivotal role in cell death during ischemic stroke. Blockade of Notch signaling by inhibition of γ-secretase, an enzyme that generates the active form of Notch, is neuroprotective following stroke. We have also identified that Pin1, a peptidyl-prolyl isomerase that regulates p53 transactivation under stress, promotes the pathogenesis of ischemic stroke via Notch signaling. Moreover, Notch can also mediate cell death through a p53-dependent pathway, resulting in apoptosis of neural progenitor cells. The current study has investigated the interplay between Notch and p53 under ischemic stroke conditions. Using pharmacological inhibitors, we have demonstrated that a Notch intracellular domain (NICD)/p53 interaction is involved in transcriptional regulation of genes downstream of p53 and NICD to modify stroke severity. Furthermore, the NICD/p53 interaction confers stability to p53 by rescuing it from ubiquitination. Together, these results indicate that Notch contributes to the pathogenesis of ischemic stroke by promoting p53 stability and signaling.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3