Cilostazol ameliorates collagenase-induced cerebral hemorrhage by protecting the blood–brain barrier

Author:

Takagi Toshinori12,Imai Takahiko1,Mishiro Keisuke1,Ishisaka Mitsue1,Tsujimoto Masanori23,Ito Hideki4,Nagashima Kazunori1,Matsukawa Haruka1,Tsuruma Kazuhiro1,Shimazawa Masamitsu1,Yoshimura Shinichi5,Kozawa Osamu3,Iwama Toru2,Hara Hideaki1

Affiliation:

1. Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan

2. Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan

3. Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan

4. First Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan

5. Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan

Abstract

Intracranial hemorrhage remains a devastating disease. Among antiplatelet drugs, cilostazol, a phosphodiesterase 3 inhibitor, was recently reported to prevent secondary hemorrhagic stroke in patients in a clinical trial. The aim of this study was to evaluate whether pre-treatment with cilostazol could decrease the intracranial hemorrhage volume and examine the protective mechanisms of cilostazol. We evaluated the pre-treatment effects of the antiplatelet drug cilostazol on the collagenase-induced intracranial hemorrhage volume and neurological outcomes in mice. To estimate the mechanism of collagenase injury, we evaluated various vascular components in vitro, including endothelial cells, vascular smooth muscle cells, pericytes, and a blood–brain barrier model. Cilostazol pre-treatment reduced the intracranial hemorrhage volume with sufficient inhibition of platelet aggregation, and motor function was improved by cilostazol treatment. Blood–brain barrier permeability was increased by collagenase-induced intracranial hemorrhage, and cilostazol attenuated blood–brain barrier leakage. Terminal deoxynucleotidyl transferase dUTP nick-end labeling and western blot analysis showed that cilostazol prevented pericyte cell death by inducing cyclic adenosine monophosphate-responsive element-binding protein phosphorylation. Cilostazol also prevented endothelial cell death and protected collagen type 4, laminin, and vascular endothelial- and N-cadherins from collagenase injury. In conclusion, cilostazol reduced collagenase-induced intracranial hemorrhage volume by protecting the blood–brain barrier.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3