Optogenetic investigation of the variable neurovascular coupling along the interhemispheric circuits

Author:

Iordanova Bistra1,Vazquez Alberto12,Kozai Takashi DY1,Fukuda Mitsuhiro2,Kim Seong-Gi34

Affiliation:

1. Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA

2. Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA

3. Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea

4. Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea

Abstract

The interhemispheric circuit connecting the left and the right mammalian brain plays a key role in integration of signals from the left and the right side of the body. The information transfer is carried out by modulation of simultaneous excitation and inhibition. Hemodynamic studies of this circuit are inconsistent since little is known about neurovascular coupling of mixed excitatory and inhibitory signals. We investigated the variability in hemodynamic responses driven by the interhemispheric circuit during optogenetic and somatosensory activation. We observed differences in the neurovascular response based on the stimulation site – cell bodies versus distal projections. In half of the experiments, optogenetic stimulation of the cell bodies evoked a predominant post-synaptic inhibition in the other hemisphere, accompanied by metabolic oxygen consumption without coupled functional hyperemia. When the same transcallosal stimulation resulted in predominant post-synaptic excitation, the hemodynamic response was biphasic, consisting of metabolic dip followed by functional hyperemia. Optogenetic suppression of the postsynaptic excitation abolished the coupled functional hyperemia. In contrast, light stimulation at distal projections evoked consistently a metabolic response. Our findings suggest that functional hyperemia requires signals originating from the cell body and the hemodynamic response variability appears to reflect the balance between the post-synaptic excitation and inhibition.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3