[11C]deschloroclozapine is an improved PET radioligand for quantifying a human muscarinic DREADD expressed in monkey brain

Author:

Yan Xuefeng1,Telu Sanjay1,Dick Rachel M1ORCID,Liow Jeih-San1,Zanotti-Fregonara Paolo1,Morse Cheryl L1,Manly Lester S1,Gladding Robert L1,Shrestha Stal1,Lerchner Walter2,Nagai Yuji3,Minamimoto Takafumi3ORCID,Zoghbi Sami S1,Innis Robert B1,Pike Victor W1,Richmond Barry J2ORCID,Eldridge Mark AG2ORCID

Affiliation:

1. Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA

2. Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA

3. Department of Functional Brain Imaging, National institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan

Abstract

Previous work found that [11C]deschloroclozapine ([11C]DCZ) is superior to [11C]clozapine ([11C]CLZ) for imaging Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). This study used PET to quantitatively and separately measure the signal from transfected receptors, endogenous receptors/targets, and non-displaceable binding in other brain regions to better understand this superiority. A genetically-modified muscarinic type-4 human receptor (hM4Di) was injected into the right amygdala of a male rhesus macaque. [11C]DCZ and [11C]CLZ PET scans were conducted 2–24 months later. Uptake was quantified relative to the concentration of parent radioligand in arterial plasma at baseline (n = 3 scans/radioligand) and after receptor blockade (n = 3 scans/radioligand). Both radioligands had greater uptake in the transfected region and displaceable uptake in other brain regions. Displaceable uptake was not uniformly distributed, perhaps representing off-target binding to endogenous receptor(s). After correction, [11C]DCZ signal was 19% of that for [11C]CLZ, and background uptake was 10% of that for [11C]CLZ. Despite stronger [11C]CLZ binding, the signal-to-background ratio for [11C]DCZ was almost two-fold greater than for [11C]CLZ. Both radioligands had comparable DREADD selectivity. All reference tissue models underestimated signal-to-background ratio in the transfected region by 40%–50% for both radioligands. Thus, the greater signal-to-background ratio of [11C]DCZ was due to its lower background uptake.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3