Hypothermia revisited: Impact of ischaemic duration and between experiment variability

Author:

Rewell Sarah SJ12,Jeffreys Amy L12,Sastra Steven A12,Cox Susan F12,Fernandez John A12,Aleksoska Elena12,van der Worp H Bart3,Churilov Leonid12,Macleod Malcolm R4,Howells David W15

Affiliation:

1. Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia

2. Department of Medicine, University of Melbourne, Melbourne, Australia

3. Department of Neurology and Neurosurgery, Brain Center Rudolf Magus, University Medical Center Utrecht, Utrecht, The Netherlands

4. Department of Clinical Neurosciences, University of Edinburgh, Edinburgh, UK

5. School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania

Abstract

To assess the true effect of novel therapies for ischaemic stroke, a positive control that can validate the experimental model and design is vital. Hypothermia may be a good candidate for such a positive control, given the convincing body of evidence from animal models of ischaemic stroke. Taking conditions under which substantial efficacy had been seen in a meta-analysis of hypothermia for focal ischaemia in animal models, we undertook three randomised and blinded studies examining the effect of hypothermia induced immediately following the onset of middle cerebral artery occlusion on infarct volume in rats (n = 15, 23, 264). Hypothermia to a depth of 33℃ and maintained for 130 min significantly reduced infarct volume compared to normothermia treatment (by 27–63%) and depended on ischaemic duration (F(3,244) = 21.242, p < 0.05). However, the protective effect varied across experiments with differences in both the size of the infarct observed in normothermic controls and the time to reach target temperature. Our results highlight the need for sample size and power calculations to take into account variations between individual experiments requiring induction of focal ischaemia.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3