Making up the predictable border: How bureaucracies legitimate data science techniques

Author:

Baykurt Burcu1ORCID,Lyamuya Alphoncina2ORCID

Affiliation:

1. University of Massachusetts Amherst, USA

2. University of Southern California, USA

Abstract

This article examines how claims to predictable borders via data science techniques are crafted in bureaucratic institutions. Through a case study of testing algorithmic systems at a transnational agency, we examine how humanitarian organizations reconcile the risks of predictive technologies with the benefits they claim to receive. Drawing on a content analysis of policy documents and interviews with humanitarian technologists, we identify three organizational strategies to justify working toward predictability: constantly seeking novel variables and data, maintaining ambiguity, and shifting models to adapt to changing circumstances. These strategies, we argue, sustain the claim that a predictable border is possible even when the technical reality of machine learning models does not live up to bureaucratic imaginaries. The so-called success of a predictable border does not solely derive from its technical capacity to estimate human mobility accurately but from creating a semblance of a predictable border inside an organization.

Publisher

SAGE Publications

Subject

Sociology and Political Science,Communication

Reference64 articles.

1. Digital Racial Borders

2. Aizeki M, Boyce G, Miller T, et al. (2021) Smart Borders or Humane World? Immigrant Defense Project’s Surveillance, Tech & Immigration Policing Project, and the Transnational Institute. Available at: https://www.tni.org/files/publication-downloads/smart_borders_humane_world_2021.pdf

3. Alburez-Gutierrez D, García C (2018) The UNHCR Demographic Projection Tool: Estimating the Future Size and Composition of Forcibly Displaced Populations. Available at: https://www.unhcr.org/5ae9ee747.pdf

4. Ambos TC, Tatarinov K (2019) Seed, scale, structure: how international organizations shape innovation. Available at: https://www.unige.ch/gsem/files/2816/2193/7363/Report_Seed_Scale_Structure.pdf

5. The deep border

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3