Representativeness and face-ism: Gender bias in image search

Author:

Ulloa Roberto1ORCID,Richter Ana Carolina2ORCID,Makhortykh Mykola3ORCID,Urman Aleksandra4ORCID,Kacperski Celina Sylwia5ORCID

Affiliation:

1. GESIS—Leibniz Institute for the Social Sciences, Germany

2. University of Passau, Germany

3. University of Bern, Switzerland

4. University of Zurich, Switzerland

5. University of Mannheim, Germany; Seeburg Castle University, Austria

Abstract

Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representativeness and face-ism in search engine image results. We systematically queried four search engines (Google, Bing, Baidu, Yandex) from three locations, using two browsers and in two waves, with gender-neutral (person, intelligent person) and gendered (woman, intelligent woman, man, intelligent man) terminology, accessing the top 100 image results. We employed automatic identification for the individual’s gender expression (female/male) and the calculation of the face-to-body ratio of individuals depicted. We find that, as in other forms of media, search engine images perpetuate biases to the detriment of women, confirming the existence of the representation and face-ism biases. In-depth algorithmic debiasing with a specific focus on gender bias is overdue.

Funder

Deutsche Forschungsgemeinschaft

Friends of the Institute of Communication and Media Science (FKMB) at the University of Bern

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

SAGE Publications

Subject

Sociology and Political Science,Communication

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Googling Politics? Comparing Five Computational Methods to Identify Political and News-related Searches from Web Browser Histories;Communication Methods and Measures;2024-06-18

2. Aligning agent-based testing (ABT) with the experimental research paradigm: a literature review and best practices;Journal of Computational Social Science;2024-05-16

3. User Attitudes to Content Moderation in Web Search;Proceedings of the ACM on Human-Computer Interaction;2024-04-17

4. Decoding the gendered design and (dis)affordances of face-editing technologies in China;International Journal of Human-Computer Studies;2024-01

5. Social Biases through the Text-to-Image Generation Lens;Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society;2023-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3