Observe, inspect, modify: Three conditions for generative AI governance

Author:

Ferrari Fabian1ORCID,van Dijck José1ORCID,van den Bosch Antal1

Affiliation:

1. Utrecht University, The Netherlands

Abstract

In a world increasingly shaped by generative AI systems like ChatGPT, the absence of benchmarks to examine the efficacy of oversight mechanisms is a problem for research and policy. What are the structural conditions for governing generative AI systems? To answer this question, it is crucial to situate generative AI systems as regulatory objects: material items that can be governed. On this conceptual basis, we introduce three high-level conditions to structure research and policy agendas on generative AI governance: industrial observability, public inspectability, and technical modifiability. Empirically, we explicate those conditions with a focus on the EU’s AI Act, grounding the analysis of oversight mechanisms for generative AI systems in their granular material properties as observable, inspectable, and modifiable objects. Those three conditions represent an action plan to help us perceive generative AI systems as negotiable objects, rather than seeing them as mysterious forces that pose existential risks for humanity.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

SAGE Publications

Subject

Sociology and Political Science,Communication

Reference41 articles.

1. Bertuzzi L (2023) EU policymakers enter the last mile for AI rulebook. Euractiv, 25 October. Available at: https://www.euractiv.com/section/artificial-intelligence/news/eu-policymakers-enter-the-last-mile-for-artificial-intelligence-rulebook/

2. Birhane A, Prabhu VU, Kahembwe E (2021) Multimodal datasets: misogyny, pornography, and malignant stereotypes. arXiv. Available at: https://arxiv.org/abs/2110.01963

3. Blumenthal R, Hawley J (2023) Hawley and Blumenthal demand answers from meta. Senator Josh Hawley, 6 June. Available at: https://www.hawley.senate.gov/hawley-and-blumenthal-demand-answers-meta-warn-misuse-after-leak-metas-ai-model

4. Bommasani R, Hudson DA, Adeli E, et al. (2021) On the opportunities and risks of foundation models. arXiv. Available at: https://arxiv.org/abs/2108.07258

5. Revisiting the Black Box Society by rethinking the political economy of big data

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3