The rich get richer and the poor get poorer? The effect of news recommendation algorithms in exacerbating inequalities in news engagement and social capital

Author:

Lin Han1ORCID,Wang Yi1,Kim Yonghwan1ORCID

Affiliation:

1. Dongguk University-Seoul, Republic of Korea

Abstract

Personalized news recommendations shape social media users’ information environment. However, whether news recommendation algorithms asymmetrically influence users’ news engagement remains largely unknown. Drawing on the three-level digital divide framework (access, use, and outcomes), we test a moderated mediation model in which social media usage motivations influence social capital via news engagement, conditional on using algorithmic news. Using two waves of survey data from South Korea ( N = 948), the results show that the indirect effects of motivations for social media use on social capital via news enagement are conditional on the level algorithmic news usage. News algorithms enable information- and socialization-oriented users to increase news engagement and develop social capital but fail to help highly entertainment-focused users increase news engagement, and thus, they do not develop social capital well. We discuss the possibility that news recommendation algorithms lead to a Matthew effect in which the poor become poorer and the rich become richer, exacerbating information inequality.

Publisher

SAGE Publications

Subject

Sociology and Political Science,Communication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3