The social construction of datasets: On the practices, processes, and challenges of dataset creation for machine learning

Author:

Orr Will1ORCID,Crawford Kate1

Affiliation:

1. University of Southern California, USA; Microsoft Research New York City, USA

Abstract

Despite the critical role that datasets play in how systems make predictions and interpret the world, the dynamics of their construction are not well understood. Drawing on a corpus of interviews with dataset creators, we uncover the messy and contingent realities of dataset preparation. We identify four key challenges in constructing datasets, including balancing the benefits and costs of increasing dataset scale, limited access to resources, a reliance on shortcuts for compiling datasets and evaluating their quality, and ambivalence regarding accountability for a dataset. These themes illustrate the ways in which datasets are not objective or neutral but reflect the personal judgments and trade-offs of their creators within wider institutional dynamics, working within social, technical, and organizational constraints. We underscore the importance of examining the processes of dataset creation to strengthen an understanding of responsible practices for dataset development and care.

Publisher

SAGE Publications

Reference41 articles.

1. Baio A (2022) AI data laundering: how academic and nonprofit researchers shield tech companies from accountability. Available at: https://waxy.org/2022/09/ai-data-laundering-how-academic-and-nonprofit-researchers-shield-tech-companies-from-accountability/ (accessed 12 October 2022).

2. A Survey of Handwritten Character Recognition with MNIST and EMNIST

3. Sorting Things Out

4. Brown T, Mann B, Ryder N, et al. (2020) Language models are few-shot learners. In: Solla SA, Leen TK, Müller KR (eds) Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, pp. 1877–1901. Available at: https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html (accessed 19 September 2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3