Entanglement density, macromolecular orientation, and their effect on elastic strain recovery of polyolefin films

Author:

Traon Fanny12ORCID,Grohens Yves1,Corre Yves-Marie1

Affiliation:

1. IRDL (UMR CNRS 6027), Université de Bretagne Sud, Lorient, France

2. Linpac Packaging PONTIVY SAS, Noyal-Pontivy, France

Abstract

For amorphous polymers, restoring forces are generated by the progressive orientation of the macromolecular chains in the stretching direction leading to a decrease in the system entropy. Orienting the chains in the future stretching direction thus reduces the entropy variation induced by the stretching and limits the entropic restoring force magnitude. Entropic restoring forces created during stretching have been correlated to the number of junction points by previous studies. Reducing the entanglement density (i.e., the number of junction points) is supposed to limit the entropic restoring force magnitude. In this study, the influence of blend ratio of low molecular weight wax and orientation level on the mechanical properties of the thin films, especially the elastic recovery, were evaluated. Elastic energy strain recovery was calculated from hysteresis curve obtained during 60% loading (stretch) and unloading (recovery) cycle and compared to rheological and orientation measurement. It has been shown that a decrease in entanglement density can minimize elastic recovery, Nevertheless, a compromise must be found, in order to limit the permanent deformation caused by chain flow. Macromolecular orientation is also a way to adjust the film mechanical properties. A LDPE 3 × 3 biaxial orientation leads to a 25% reduction in transversal direction elastic recovery (compared to MDO cast film) without altering machine direction mechanical behavior. However, for ethylene vinyl acetate, the uniaxial macromolecular orientation seems to impact the film behavior in the transverse direction by causing a smaller inter-atom distance, favoring a higher bond strength. The latter acts as transient physical nodes, increasing entropic restoring forces.

Funder

French National Association for Research and Technology

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3