Mathematical simulation of the calendering process for non-Newtonian polymers

Author:

Javed Muhammad Asif1ORCID,Nasir Sarah1,Ali Nasir2,Arshad Sabeen3

Affiliation:

1. Department of Mathematics, University of Lahore Gujrat Campus, Pakistan

2. Department of Mathematics & Statistics, International Islamic University, Islamabad, Pakistan

3. Department of Physics, University of Lahore Gujrat Campus, Pakistan

Abstract

This paper mathematically studies calendering with a tangent hyperbolic model to simulate non-Newtonian polymers. The constitutive equations based on Lubrication Approximation Theory (LAT) are first non-dimensionalized and then simplified. The simplified equations describing the flow inside the calender are solved (a) analytically using the perturbation method and (b) numerically using MatLab built-in routine “BVP4c” method. The first case obtains an analytical expression for velocity, pressure gradient, and final sheet thickness with the help of the perturbation method, while BVP4c and Runge-Kutta methods are used to calculate the velocity, pressure, pressure gradient, and mechanical quantities numerically. The power-law index and Weissenberg number influence on pressure, pressure gradient, and velocity profiles of fluid being calendered are shown with graphs. The pressure inside the calender decreases as the power-law index and Weissenberg number increase. The force function and final sheet thickness decreases as the power-law index and Weissenberg number increases.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3