Comparing the performance of electrospun and cast nanocomposite film of polyamide-6 reinforced with multi-wall carbon nanotubes

Author:

Ghane N1,Mazinani S2ORCID,Gharehaghaji AA1

Affiliation:

1. Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran

2. New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, Iran

Abstract

This study aims at fabrication and characterization of two different structures of electrically conductive polyamide 6/multi-wall carbon nanotube nanocomposite films at different multi-wall carbon nanotube concentrations including electrospun nanofibrous and cast films. Morphology, embedded multi-wall carbon nanotubes into nanofiber, thermal behavior, electrical conductivity and wettability of films were characterized. Scanning electron microscopy images depicted that the nanofiber diameter decreased with increased nanofillers. Enhancement of crystallinity, electrical and tensile properties, and simultaneously achieving a low percolation threshold confirmed good nanotube dispersion by employing a polymeric emulsifier, polyvinylpyrrolidone. The electrospun film crystalline content increased 18.5% and the cast ones increased 46.8% at 7 wt.% multi-wall carbon nanotubes loading. The electrospun and cast membrane electrical conductivity increased by 10 and 12 orders of magnitude. These results demonstrated higher values compared to previously reported data for polyamide 6/multi-wall carbon nanotube nanocomposites. The electrospun film Young’s modulus increased 93% and that of casted one increased 267%, due to the increased crystallinity after adding carbon nanotubes into the films.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3