Blown films with balanced in-plane properties from polypropylene-clay nanocomposites though silane coupling

Author:

Ren Weijie1,Jayaraman Krishnamurthy1ORCID

Affiliation:

1. Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, USA

Abstract

Layered silicates present interaction sites at both faces and edges of the nanolayers and silane coupling agents that locate at both sites lead to polymer nanocomposites with superior melt strength and properties. This work’s objective was (a) to investigate the effectiveness of solvent-free, vapor phase, silane treatment of the nanolayers for formulating masterbatches and (b) to compare the mechanical properties of 1 mil thick blown films from polypropylene copolymer nanocomposites with such coupling, to films from the neat polypropylene. The nanocomposite blown film tensile modulus and tensile strength improved along both the draw direction and the transverse direction. In addition, their elongation to failure was close to 500% along both directions, in contrast to values of 500% along MD and 170% along TD for the neat PP copolymer. These trends may be understood in terms of the crystalline lamellar orientation distribution in the films. FESEM images revealed that cross-hatched lamellae were absent from the unfilled PP blown film and were pervasive in the nanocomposite blown film. The nanolayers were oriented in the film plane with the longer dimension largely along the MD. The lower extent of lamellar orientation around nanolayers may be attributed to the strong reduction in the polymer chain mobility attached to the nanolayers.

Funder

Michigan Economic Development Corporation

Petoskey Plastics

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3