Effects of magnesium borate on the mechanical performance, thermal and chemical degradation of polyethylene terephthalate packaging material

Author:

Demirel Bilal1ORCID,Kılıç Esra1,Yaraş Ali2,Akkurt Fatih3,Daver Fugen4,Gezer Derya U5

Affiliation:

1. Material Science and Engineering Department, Erciyes University, Kayseri, Turkey

2. Metallurgical and Materials Engineering Department, Bartin University, Bartin, Turkey

3. Chemical Engineering Department, Gazi University, Ankara, Turkey

4. Manufacturing, Materials and Mechatronics Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia

5. Quality Control Department, Koksan PET Packaging Industry Co., Gaziantep, Turkey

Abstract

This study is on polyethylene terephthalate (PET) compounded with magnesium borate (MB) (Mg2B2O5) powders between (0.2–3.2% by weight) which were synthesized via sol-gel technique at laboratory-scale. The MB/PET composites were characterized in terms of chemical, thermal degradation, and mechanical properties. Their phases and chemical structures were identified by X-ray Diffraction and Fourier Transform Infrared analyses. The MB added into PET matrix significantly reduced PET degrading to acetaldehyde, carboxylic acids and diethylene glycol. However, while at 0.2 wt.% MB isophthalic acid (IPA) decreased and at higher MB concentrations there were higher IPA levels. The added MB increased the composites intrinsic viscosity (IV) compared to the pure PET. The highest IV (0.701 dL/g) was at the 0.2 wt.% MB/PET composite. Both Tg and Tm temperatures trended down up to 3.2 wt.% MB. Compared to pure PET, glass transition temperature (Tg) decreased to 80.4°C (at 3.2 wt.% MB) from 81°C, whereas melt temperature (Tm) decreased to 248.5°C (at 3.2 wt.% MB) from 249.4°C. The MB/PET composite tensile strength increased by 11.31% to a 60 MPa maximum at 0.2 wt.% MB compared to neat PET (53.9 MPa). However, at 0.4 wt. % and higher MB the dispersion was insufficient causing the MB powders to aggregate in the PET matrix, resulting in reduced tensile strength.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3