Interaction of porous substrate and vegetable oil-based hydrophobic thermoset coatings during UV-polymerization

Author:

Husić Indira1,Mahendran Arunjunai Raj1ORCID,Sinic Judith1,Jocham Christoph1,Lammer Herfried1

Affiliation:

1. WOOD K Plus - Competence Center for Wood Composites and Wood Chemistry, Linz, Austria

Abstract

In the current study, we report the progress in developing new UV polymerizable hydrophobic biobased coatings from modified vegetable oil for porous substrates like paper and wood. The aim was to produce novel hydrophobic coatings on porous substrates and investigate how the porous nature of the substrates will be affected by different chemical formulations that penetrate into the interior of the substrate during the exposure to different intensities of UV light, and what hydrophobic properties that interaction will result in. The curing formulations were based on acrylated epoxidized linseed oil (AELO) as a prepolymer. For the UV polymerization, 1-hydroxycyclohexyl phenyl ketone (Irgacure 184) was used as a photoinitiator; isobornyl acrylate (IBA) and isosorbide methacrylate (IM) were used as bio-based diluents; hexadecyltrimethoxysilane (HDTMS), vinyl-polydimethylsiloxane (v-PDMS), triethoxyoctylsilane (TEOS) were used as hydrophobic additives and they were added in different concentrations to the AELO curing formulations. The formulations were then cured under UV light on wood and paper substrates. FT-IR analysis showed that the AELO resin was successfully polymerized on both paper and wood substrates, and by contact angle measurements it was found that the highest hydrophobicity was achieved for the coatings that contain HDTMS (108° in average). The layer thickness on wood substrates was in between 9 and 20 µm, and on paper substrates between 8 and 24 µm. Only about a 5° difference in contact angle was observed between the coatings with respect to change in diluents and different UV light intensity. All cured samples showed a good chemical resistance to acetic acid, citric acid and ethyl alcohol after 1 hour exposure; to acetone and ethylbutyl acetate after 10 s, and to benzine after 2 minutes. Outstanding hydrophobic behavior was observed for the HDTMS coatings, however, better physical properties were determined for the coatings containing v-PDMS and TEOS, on which the scratching was observed after the applied force of 1.5 and 0.6 N in comparison to HDTMS coatings (0.4 N). The resulting properties achieved for the AELO coatings indicated that it has a potential to be used for wood coating and packaging application.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3