Effect of Rheological Strain Hardening on Extrusion Blown Film of Polyvinylidene Fluoride

Author:

Mekhilef Nafaa1,Hedhli Lotfi2,Moyses Stephan2

Affiliation:

1. Arkema Inc. R&D Center, 900 First Ave King of Prussia, PA 19406, USA, com

2. Arkema Inc. R&D Center, 900 First Ave King of Prussia, PA 19406, USA

Abstract

In this work the effect of strain hardening on poly-vinylidene fluoride (PVDF) extrusion blown film is investigated. Controlled long chain branching is introduced via a multi-functional initiator to produce two PVDF samples with different molecular weight and chain architecture. The branched samples are compared to two reference resins having identical molecular weight and no chain branching. All samples are characterized by size exclusion chromatography (SEC) coupled with triple detection system comprising a Differential Refractive Index (DRI) detector, Intrinsic Viscosity (IV) detector, and Multi-Angle Laser Light Scattering (MALLS) detector, to determine their molecular weights and their distribution as well as to detect chain branching via measuring the coil size in dilute solution. The rheological properties are determined using oscillatory measurement and melt strength at 230°C while extensional viscosity measurements are conducted at 180°C to determine strain hardening at different extension rates. The resins are evaluated using a small scale extrusion blown film set-up to determine the blow-up ratio and the minimum thickness achievable. The characterization results show that the control samples are different in molecular weight and almost identical in the polydispersity index (Mw/Mn). The branched samples, however, have higher molecular weight and a slightly broader molecular weight distribution. Light scattering data together with inherent viscosity data show that the branched samples have a lower radius of gyration (RG) and inherent viscosity (IV) over the entire molecular weight distribution confirming chain branching. The rheological properties in oscillatory measurements show that the branched samples exhibit almost identical viscosities as the control samples. However, a broader transition from the Newtonian to the non-Newtonian region for the branched sample is observed confirming the SEC—MALLS results. This is corroborated using extensional viscosity and melt strength measurements, which show a significant strain hardening and an increase in melt strength, respectively. Blown film experiments show that the samples containing chain branching could be processed under similar process conditions as the control samples, and with a higher blow up ratio thereby achieving 5 μm film thickness with high clarity.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3