Affiliation:
1. Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
Abstract
This study is a non-isothermal analysis of the calendering process using a water based nanofluid with Cu-nanoparticles. The basic flow equations are simplified under the lubrication approximation theory (LAT) and non-dimensionalized. Theoretical velocity and pressure gradient solutions are achieved, and temperature distribution is numerically computed by finite difference method. The impact of nanoparticle volume fraction on pressure distribution, fluid velocity, temperature distribution, power input, and separating force are presented through graphs and discussed. Nanoparticle volume fraction enhances the magnitude of pressure, pressure gradient, and temperature distribution. Power input and roll-separating force also rise for higher nanoparticle volume fraction. Model II of dynamic viscosity of nanofluid has a greater impact on physical parameters as compared to the model I of dynamic viscosity.
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献