DESSRT: A Novel Framework for Empirical Red Teaming at Scale

Author:

Behlendorf Brandon1ORCID,Ackerman Gary1

Affiliation:

1. College of Emergency Preparedness, Homeland Security and Cybersecurity, University at Albany, Albany, NY, USA

Abstract

Background Red Teaming is widely used to discover vulnerabilities, test defensive measures, and anticipate emerging but novel threats. It has rarely been conducted both systematically and at scale, substantially limiting confidence in its results and the generalizability of its findings. Aim We introduce distributed, empirical, systematic, and scalable red teaming (DESSRT), a framework for translating tactical-level Red Teaming into a replicable research methodology. We apply DESSRT to address whether the information about and availability of computed tomography (CT) scanners influences adversary decision-making in aviation security. Method Using a convenience sample of 143 university students, participants role-played as adversaries in an eight-hour attack planning exercise. Via a custom instrument, participants were randomly assigned across three adversary profiles built on historical cases and then designed a simulated attack. Afterwards, one of three injects about CT scanners were randomly assigned, and participants were asked about potential changes in attack plans (including target changes). Differences among assigned profiles and CT scanner injects were evaluated using standard statistical tests of association. Results Although differences in explosive and weapon package selections were not statistically significant across profiles, security evasion methods were. Following injects, participants were equally as likely to change tactics across profiles, with the majority (53%) changing at least one tactical area. When asked, the majority (18) of those who changed targets (27/143) reported that the additional information on CT scanners did have some effect on their target change decision. Conclusion Overall, the DESSRT framework provides a novel mechanism for translating traditional Red Teaming exercises into a replicable and empirical research method. Although not a replacement for historical data, where available, DESSRT allows analysts and researchers to test theories about human decision-making, generate novel what-if insights to support planning efforts, and validate parameters within complex models.

Funder

Science and Technology Directorate

Publisher

SAGE Publications

Subject

Computer Science Applications,General Social Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3