Integrating Biofeedback and Artificial Intelligence into eXtended Reality Training Scenarios: A Systematic Literature Review

Author:

Blackmore Karen L.1,Smith Shamus P.2ORCID,Bailey Jacqueline D.1,Krynski Benjamin3

Affiliation:

1. The University of Newcastle, Callaghan, NSW, Australia

2. Griffith University, Nathan, QLD, Australia

3. Real Response Pty Ltd, Edgecliff, NSW, Australia

Abstract

Background The addition of biofeedback and artificial intelligence (AI) in simulation training and serious games has shown promising results in improving the effectiveness of training and can lead to increased engagement, motivation, and retention of information. This systematic literature review explores the integration of biofeedback and artificial intelligence into eXtended reality (XR) training scenarios and is the first review to provide a consolidated overview of applied biofeedback and AI technologies in this area. Method This review was conducted using keywords related to biofeedback, AI, XR, and training and included papers that: contained the use of biofeedback and AI in XR training scenarios; reported on at least one outcome related to training effectiveness; were published in English; were peer-reviewed; date from 1 January 2016 – 7 February 2022. Results The results indicate that many studies collect two or more biosignals using a single biosensing device. This is particularly relevant in applied settings, where ease of use and minimal interference in training/education activities is desired. Also, that light, portable devices such as wrist bands, wireless straps, or headbands are preferred. Additionally, eye tracking, electrodermal activity (EDA), and photoplethysmograms (PPG) present as particularly useful biomarkers of stress and/or cognitive load in XR training contexts. A wide variety of machine learning (ML) approaches were used to support biofeedback systems in XR environments. However, a limited number of studies employed real-time analysis of biosignals (just 1% of studies) which indicates current challenges in implementing such systems. Conclusion The majority of papers meeting the selection criteria were from the fields of education and healthcare. Further research in other domains, such as defense and general industry, is needed to gain a comprehensive understanding of the potential for biofeedback and AI integration in XR training scenarios used in these domains.

Funder

Real Response Pty Ltd

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3