A full-range stress-strain model for metallic materials depicting non-linear strain-hardening behavior

Author:

Swain Digendranath1ORCID,Selvan S Karthigai1,Thomas Binu P1,Asraff Ahmedul K2,Philip Jeby1

Affiliation:

1. Experimental Mechanics Division, Vikram Sarabhai Space Center, Indian Space Research Organization, Thiruvananthapuram, Kerala, India

2. Structural Dynamics and Analysis Group, Liquid Propulsion Systems Centre, Valiamala, Indian Space Research Organization (ISRO), Thiruvananthapuram, Kerala, India

Abstract

Ramberg-Osgood (R-O) type stress-strain models are commonly employed during elasto-plastic analysis of metals. Recently, 2-stage and 3-stage R-O variant models have been proposed to replicate stress-strain behavior under large plastic deformation. The complexity of these models increases with the addition of each stage. Moreover, these models have considered deformation till necking only. In this paper, a simplistic multi-stage constitutive model is proposed to capture the strain-hardening non-linearity shown by metals including its post necking behavior. The constitutive parameters of the proposed stress-strain model can be determined using only elastic modulus and yield strength. 3-D digital image correlation was used as an experimental tool for measuring full-field strains on the specimens, which were subsequently utilized to obtain the material parameters. Our constitutive model is demonstrated with an aerospace-grade stainless steel AISI 321 wherein deformation response averaged over the gauge length (GL) and at a local necking zone are compared. The resulting averaged and local material parameters obtained from the proposed model provide interesting insights into the pre and post necking deformation behavior. Our constitutive model would be useful for characterizing highly ductile metals which may or may not depict non-linear strain hardening behavior including their post necking deformations.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3