Affiliation:
1. Civil Engineering Department, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, India
Abstract
In the present study, the static and free vibration analysis of functionally graded carbon nano-tubes reinforced (FG-CNTR) sandwich plates are studied in the framework of inverse hyperbolic shear deformation theory. The governing differential equations are derived using Hamilton’s principle and solved with the Navier’s solution technique. The analytical approach is used to obtain the deflections, stresses, natural frequencies, and corresponding mode shapes of FG-CNTR sandwich plates with different material properties, stacking sequences, span thickness ratios, core to face sheet thickness ratios, and loading conditions. Different types of reinforcement distribution such as uniformly distribution (UD) and functionally graded (FG) distribution of FG-O, FG-X, FG-/\, and FG-V are considered for the analysis. Also, the efforts are made to achieve the best possible arrangement for the stacking sequences and the appropriate reinforcement distribution that will produce improved static and free vibration responses for the FG-CNTR sandwich plates.
Funder
science and engineering research board
department of science and technology, ministry of science and technology, india
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献