Predictive modeling of spring-back in pre-punched sheet roll forming using machine learning

Author:

Zeinolabedin-Beygi Ali1,Naeini Hassan Moslemi12ORCID,Talebi-Ghadikolaee Hossein3,Rabiee Amir Hossein4,Hajiahmadi Saeid1

Affiliation:

1. Materials Forming Laboratory, School of Mechanical Engineering, Tarbiat Modares University, Tehran, IR Iran

2. Academic Center for Education, Culture and Research (ACECR), Tehran, Iran

3. Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran

4. Department of Mechanical Engineering, Arak University of Technology, Arak, Iran

Abstract

This study outlines an experimental and computational endeavor aimed at developing a machine learning model to estimate spring-back values utilizing the decision tree methodology. A design of experiment approach was employed to collect a dataset, and based on the experimental results, a precise model was constructed to predict spring-back values. The model considered parameters such as thickness, diameter of circle hole, distance between the center hole and flange edge, and hole spacing. Various hyper parameters, including max depth and minimum samples for split, were explored, with configurations such as (30,5), (20,8), and (10,2) being evaluated to identify the optimal model for spring-back prediction. Analysis of the results demonstrated that the decision tree models accurately estimated spring-back values in cold roll forming of pre-punched sheets based on the input parameters. The coefficient of determination in the test section for decision tree models with parameters (30,5), (20,8), and (10,2) was found to be 0.90, 0.98, and 0.96, respectively. Additionally, the percentage of absolute error in the test section for the same decision tree models was calculated as 8.84%, 6.18%, and 7.6%, respectively.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3