Affiliation:
1. Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
Abstract
This article presents the results of experimental and analytical studies on the response of steel and aluminium square plates with different thicknesses subjected to blast loading. Based on the blast wave details and the scaling law for explosions, a method of determining the blast load is proposed in which ballistic pendulums do not need to be utilized for obtaining the blast wave impulses. The loads applied to the plates are assumed to be the quasi-exponential pressure pulses, which are the same as the explosion overpressures. The theoretical solutions are presented using a rigid, perfectly plastic idealization and are exact within the context of dynamic plasticity. The dynamic energy imparted to structures can cause material failure. The presented investigation considers such a failure for fully clamped plates subjected to a blast loading idealized as an initial velocity distributed uniformly throughout the area. The predicted deflections and general failure modes of the plates are presented and compared with experimental results. Moreover, a numerical simulation is carried out by modelling an FSI (fluid–solid interaction) problem. Results are compared with each other and a better agreement between numerical results with experimental ones is observed.
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献