Bending analysis of nanobeams based on the integral form of nonlocal elasticity using the numerical Rayleigh-Ritz technique

Author:

Oskouie Mohammad Faraji1,Ansari Reza1,Rouhi Hessam2ORCID

Affiliation:

1. Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran

2. Department of Engineering Science, Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar-Vajargah, Iran

Abstract

The nonlocal theory is commonly applied for nanomaterials due to its capability in considering size influences. Available studies have shown that the differential version of this theory is not suitable for some problems such as bending of cantilever nanobeams, and the integral version must be used to avoid obtaining inconsistent results. Therefore, an attempt is made in this paper to propose an efficient variational formulation based on the integral nonlocal model for the analysis of nanobeams. The formulation is developed in a general form so that it can be used for arbitrary kernel functions. The nanobeams are modeled using the Bernoulli-Euler beam theory, and their bending behavior is analyzed. Derivation of governing equations is performed according to an energy-based approach. Also, a numerical approach based on the Rayleigh-Ritz method is developed for the solution of problem. Moreover, the results of integral and differential models are compared. It is revealed that by the proposed numerical solution, the paradox in the behavior of nanocantilever is resolved.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3