Failure mechanics analysis of AISI 4340 steel using finite element modeling of the milling process

Author:

Muaz Muhammed1,Khan Sanan H2ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, India

2. Department of Mechanical Engineering, Aligarh Muslim University, Aligarh, India

Abstract

A slot cutting operation is studied in this paper using a rotating/translating flat end milling insert. Milling operation usually comprises up-milling and down-milling processes. These two types of processes have different behaviors with opposite trends of the forces thus making the operation complex in nature. A detailed Finite Element (FE) model is proposed in this paper for the failure analysis of milling operation by incorporating damage initiation criterion followed by damage evolution mechanism. The FE model was validated with experimental results and good correlations were found between the two. The failure criteria field variable (JCCRT) was traced on the workpiece to observe the amount and rate of cutting during the machining process. It was found that the model was able to predict different failure energies that are dissipated during the machining operation which are finally shown to be balanced. It was also shown that the variation of these energies with the tool rotation angle was following the actual physical phenomenon that occurred during the cutting operation. Among all the energies, plastic dissipation energy was found to be the major contributor to the total energy of the system. A progressive failure analysis was further carried out to observe the nature of failure and the variation of stress components and temperature occurring during the machining process. The model proposed in this study will be useful for designers and engineers to plan their troubleshooting in various applications involving on-spot machining.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3