Describing tube formability during pulsating hydroforming using forming limit diagrams

Author:

Yang Lianfa1,Tang Daofu1,He Yulin1

Affiliation:

1. Faculty Mechanical & Electrical Engineering, Guilin University of Electronic Technology, Guilin, China

Abstract

Pulsating hydroforming is a novel forming technique that applies pulsating hydraulic pressure to deform tubular materials. Larger expansions and more uniform wall thicknesses in tubes have reportedly been achieved using this technique. However, periodic oscillations of hydraulic pressure acting on the tubes during pulsating hydroforming make the tube deformation behaviour and formability unpredictable. Forming limit diagrams, which consist of two forming limit curves in a major–minor strain coordinate system, are widely used to indicate the formability of sheet materials in plastic deformation. The comparable use of forming limit diagrams to indicate the formability of tubular materials under the pulsating action of hydroforming has not been previously established. In this study, pulsating and non-pulsating hydro-bulging experiments were performed on SS304 stainless steel tubes. Under distinct tension–compression and tension–tension strain states with and without active axial feeding, the forming limit curves for the deformed tubes were constructed based on the experimental data. The effects of various hydraulic pressure pulsating parameters, including pulsating amplitude and frequency, on the forming limit curves were analysed and compared. The experimental results showed that each of the forming limit curves under pulsating hydro-bulging was higher than the forming limit curves under non-pulsating hydro-bulging, thereby confirming the influence of the pulsating parameters. In general, the height of the forming limit curves increased as the pulsating amplitude and frequency increased, largely independent of the tension–compression and tension–tension states. Overall, the results showed that the proposed method for determining the forming limit curves (and the subsequent forming limit diagram) for tubes during pulsating hydro-bulging is feasible.

Funder

Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology

Guangxi Natural Science Foundation

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Application of the Bees Algorithm to Pulsating Hydroforming;Springer Series in Advanced Manufacturing;2022-11-20

2. Plastic behaviour of SUS304 stainless steel tubes under intermittent uniaxial tensile loading;International Journal of Materials and Product Technology;2022

3. Evolution of Hydroforming Technologies and Its Applications — A Review;Journal of Advanced Manufacturing Systems;2020-12

4. A state of the art review of hydroforming technology;International Journal of Material Forming;2019-12-18

5. Forming limit diagrams for tubes with non-uniform thickness in hydro-bulging;The International Journal of Advanced Manufacturing Technology;2019-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3