Affiliation:
1. Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
Abstract
The analysis of a cracked isotropic half-plane perfectly bonded to an intact orthotropic layer is accomplished. A crack tip terminates at or is adjacent to the interface of the orthotropic layer and substrate while sustaining anti-plane traction. The power of stress singularity at the crack tip, situated in the interface, is obtained for different crack orientations and composite layers. Employing the integral transform method stress field caused by a screw dislocation in the substrate is determined. The dislocation solution is used to construct an integral equation for the density of dislocations on the crack surface. The numerical solution to integral equations is utilized to obtain stress intensity factors at the crack tip inside the substrate, crack opening displacements, and contours of the second invariant of stress deviator around the crack tip, situated at or close to the interface, for different crack orientations and orthotropic layers.
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation