Microstructure/geometric imperfection sensitivity on the thermo-mechanical nonlinear stability behavior of functionally graded plates using four variable refined structural kinematics

Author:

Rajput Mohit1,Gupta Ankit1ORCID

Affiliation:

1. School of Engineering, Shiv Nadar University, Uttar Pradesh, India

Abstract

The present work deals with the nonlinear stability characteristics of geometrically imperfect shear deformable functionally graded plates (FGP) subjected to thermo-mechanical loads. The equilibrium, stability, and compatibility equations are derived using trigonometric shear-strain function based refined shear deformation plate theory. The displacement field used in the present study has been employed for FGP for the first time. The in-plane and transverse displacements consist of bending and shear components, whereas the displacement field contains only four unknowns. Geometric nonlinearity has been incorporated in the formulation in a von-Karman sense. A generalized porosity model has also been developed to accommodate both even and uneven porosity distribution reported in the literature. Various models of geometric imperfection have been modeled using imperfection function. An exact expression for the critical buckling load and critical buckling thermal load of geometrically imperfect porous FGPs for various loading conditions have been developed. After ensuring the excellent accuracy of the developed expression, the influence of geometric imperfection, porosity inclusion, and geometric configuration on the nonlinear stability of FGPs has been discussed extensively. The results presented in this paper will be used as a benchmark for future research.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3