A novel multiaxial fatigue life prediction model based on the critical plane theory and machine-learning method

Author:

Tang Jianxiong1ORCID,Zhou Jie1,Tan Zheng chao1

Affiliation:

1. Institute of Electronic Engineering, China Academy of Engineering Physics, Mian yang, Sichuan, P.R. China

Abstract

In order to characterize the fatigue failure and damage mechanism under complex multiaxial loads, several multiaxial semi-empirical fatigue models, such as Fatemi-Socie (FS), Smith-Watson-Topper (SWT) and Wang-Brown (WB) models, were proposed to explain the relationship between fatigue life and stress/strain based on experimental analysis or observation. Although the semi-empirical model is widely used in practice because of its simplicity, but it is difficult to uniformly model the mean stress effect of a wide range of materials and loading conditions. To address this issue, a multiaxial fatigue life prediction model based on critical plane theory and machine learning is proposed in this work. Through the multi-layer stacking mechanism, the model comprehensively utilizes domain knowledge and original data information, and integrates the advantages of different models in capturing data and utilizing features. The experimental results showed that the proposed model achieves stable and highly accurate fatigue life prediction of the GH4169, wrought Ti-6Al-4V and TC4 materials with complex working conditions.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3