A micromechanical model for predicting biaxial tensile moduli of plain weave fabric composites

Author:

Bai JB1,Xiong JJ1,Shenoi RA2,Wang Q1

Affiliation:

1. School of Transportation Science and Engineering, Beihang University, Beijing, People’s Republic of China

2. Southampton Marine and Maritime Institute, University of Southampton, Southampton, UK

Abstract

This article presents a new micromechanical model to predict biaxial tensile moduli of plain weave fabric composites by considering the interaction between the orthogonal interlacing strands. The two orthogonal yarns in micromechanical unit cell were idealized as curved beams with a path depicted using sinusoidal shape functions. The biaxial tensile moduli of plain weave fabric composites were derived by means of the minimum total complementary potential energy principle founded on micromechanics. Biaxial tensile tests were conducted on the resin transfer molding–made EW220/5284 plain weave fabric composites at five biaxial loading ratios of 0, 1, 2, 3 and ∞ to validate the new model. Predictions from the new model were compared with experimental data. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed model. Using the new model, the biaxial tensile moduli of plain weave fabric composites can be predicted based only on the properties of basic woven fabric.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3