Comparison of different filtering strategies to reduce noise in strain measurement with digital image correlation

Author:

Baldoni Jacopo1,Lionello Giacomo2,Zama Fabiana3,Cristofolini Luca1

Affiliation:

1. Department of Industrial Engineering, Alma Mater Studiorum—Università di Bologna, Bologna, Italy

2. Medical Technology Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy

3. Department of Mathematics, Alma Mater Studiorum—Università di Bologna, Bologna, Italy

Abstract

The main limitation of digital image correlation is the remarkable noise affecting the digital image correlation–computed strain distributions. Neither manufacturers of digital image correlation systems nor the literature provide guidelines for optimal filtering of digital image correlation strain distributions. However, filtering is also associated with loss of information (smoothing of the strain gradients). We systematically explored different filtering strategies to reduce noise while minimizing the loss of information in the digital image correlation–computed strain distributions. The first filtering strategy was directly applied to the acquired images that were then fed to the digital image correlation software. Median adaptive low-pass filters and notch filters were used to eliminate noise: both strategies increased (rather than reducing) the noise in the digital image correlation–computed strain distributions. The second strategy explored was a Gaussian low-pass filtering of the strain distributions. When the optimal cutoff frequency was selected, the noise was remarkably reduced (by 70%) without excessive loss of information. At the same time, when non-optimal cutoff frequencies were used, the residual noise and/or loss of information seriously compromised the results. Finally, image combination techniques were applied both to the input images and to the strain distributions. This strategy was extremely time-consuming but not very effective (noise reduction <10%). In conclusion, the only truly effective noise reduction strategy, if measurements are carried out using commercial closed software, consists in filtering the strain distribution.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3