Nonlocal dual-phase-lag thermoviscoelastic response of a polymer microbeam incorporating modified couple stress and fractional viscoelastic theories

Author:

Peng Wei1ORCID,Qi Zezhang2,He Tianhu12

Affiliation:

1. Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, China

2. School of Science, Lanzhou University of Technology, Lanzhou, China

Abstract

Ultra-slow relaxation process of polymers has the memory-dependent feature, integer-order thermoviscoelastic models may fail to describe the dynamic behaviors of viscoelastic structures accurately. Additionally, it is noticed that the small-scale effect of elastic deformation and heat conduction in a non-isothermal temperature environment is becoming significant due to the development of micro-devices. To better capture the memory-dependent effect and the small-scale effect of viscoelastic micro-structures in heat transfer environment, as a first attempt, present work focuses on developing a refined fractional Kelvin-Voigt thermoviscoelastic model by incorporating the nonlocal dual-phase-lag (NDPL) heat conduction model and the modified coupled stress theory (MCST). Then, the model is applied to investigating the transient response of a polymer microbeam subjected to a harmonic thermal loading. The governing equations involving the modified parameters are formulated and then solved by Laplace transform method. Some parametric results are demonstrated to display the impacts of the nonlocal thermal parameter, the material length-scale parameter and the fractional-order parameter on the considered physical quantities. The results show that the small-scale effect and the memory-dependent effects strongly depend on the polymer micro-structure characteristics in thermal environment.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3