A mesh refinement scheme for fourth order bi-harmonic equation of mixed boundary-value elastic problems

Author:

Khan Aminul Islam12,Sarkar Pranta Rahman1ORCID,Akanda Abdus Salam1

Affiliation:

1. Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

2. School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA

Abstract

Fourth order bi-harmonic equation is extensively used for stress-strain analysis of mixed boundary-value elastic problems. However, currently existing uniform mesh scheme based on finite difference method (FDM) needs vast amount of computational resources and efforts for an acceptable solution. Therefore, in this study, a mesh refinement (MR) scheme based on FDM is developed to solve fourth order bi-harmonic equation effectively. The developed MR scheme allows high resolution computation in sub-domains of interest and relatively low resolution in other regions which overcomes the memory exhausting problems associating with the traditional uniform mesh based FDM. In this paper, sub-domain that needs high resolution (mesh refinement) are identified based on gradient of stress and displacement vectors. A very high gradient in any region signifies the need of fine mesh because coarse grained meshes are not adequate to capture the sharply changing stresses or displacements. Once the sub-domains of interest are identified, the mesh refinement is done by splitting course meshes into smaller meshes. Several new stencils are created to satisfy the fourth order by harmonic equation and associated boundary conditions over the various sizes of meshes. The developed MR scheme has been applied to solve several classical mixed boundary-value elastic problems to show its applicability. In addition, the validity, effectiveness, and superiority of the MR scheme have been established by comparing of obtained solutions with uniform mesh results, finite element method (FEM) results, and the well-known analytical results. Our results show that the developed MR scheme can provide a more reliable and accurate result than the conventional uniform mesh scheme with a reduced number of equations, thus, saves a huge amount of computational memory.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3