Predicting forming limit diagrams for AZ31 magnesium alloy and 7050 aluminum alloy by numerical simulation

Author:

Xue Fengmei1ORCID,Yan Yu1,Kang Jincheng2

Affiliation:

1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China

2. Department of Industrial and Material Science, Chalmers University of Technology, Gothenburg, Sweden

Abstract

Forming limit diagram (FLD) is the most intuitive method to evaluate and analyze the forming performance of sheet metal, which is widely used in production. To examine the formability of AZ31 magnesium alloy and 7050 aluminum alloy, the simplified bulging models based on the Nakazima experiment are established by ABAQUS finite element (FE) software, and the maximum punch force criterion is adopted as the instability criterion. The forming limit diagrams of 7050 high-strength aluminum alloy at room temperature and AZ31 magnesium alloy at warm working conditions are obtained by extracting the in-plane strain of the adjacent element of the maximum strain element at the moment of instability. Compared with experimental observation shows that the Nakazima virtual model established in this paper can accurately predict FLD. In addition, the influences of lubrication conditions and virtual punching speeds on the bulging process of AZ31 and AA7050 sheet metals are also investigated. The results show that the better the lubrication environment, or the lower the punching speed, the better the formability of the sheet, and reducing the punching speed has a more significant improvement effect on the formability of AZ31 sheets.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3