Optimization of the sintering temperature, cooling time and grain size parameters to reduce residual stresses of copper-aluminum functionally graded material using response surface methodology

Author:

Gheysarian Ahmad1,Honarpisheh Mohammad1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran

Abstract

One of the urgent needs for the medical, aerospace and military industries is to combine materials with heat-resistant as well as flexible structures. To create such a property, a ceramic must be placed next to metal. FGM materials have such a property in terms of thickness. Functionally graded materials (FGM) are examples of materials with different properties in the thickness direction. In the functionally graded materials, different properties can be created, by changing the percent weight of materials in each layer. It is very important to study the number of residual stresses in these materials due to the fact that several materials with different properties are combined with each other. The purpose of this study is to investigate the effect of production parameters on the number of residual stresses in the aluminum-copper FGM part and also to optimize the production process of these materials. The results indicate that the number of residual stresses decreases with increasing the sintering temperature, cooling time of the sample as well as uniformity along the thickness. In the experiments, the maximum residual stress was 171 MPa, which was obtained for a grain size of 100 microns, sintering temperature of 600°C and cooling time of 24 h and the minimum value of pressure residual stress was 120 MPa, which was obtained for grain size of 20 microns, sintering temperature of 900°C and cooling time of 48 h. Also, finite element modeling of the process was performed and shown a good agreement with experimental results.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3