A rotating magneto-photothermoelastic effect with moisture diffusivity of nonlocal semiconductor medium

Author:

Raddadi Merfat H1,Mahdy Amr MS2,El-Bary Alaa A3,Lotfy Khaled14ORCID,Allan Mohammed4

Affiliation:

1. Department of Mathematics, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia

2. Department of Mathematics and Statistics, College of Science, Taif University, Taif, Saudi Arabia

3. Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt

4. Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt

Abstract

This study focuses on investigating the deformation of a one-dimensional elastic nonlocal semiconductor medium. The aim is to understand how the magnetic field and moisture diffusivity affect this deformation. The research aims to analyze the connection between plasma and moisture diffusivity processes in a rotational field, as well as thermo-elastic waves. The study examines the transport process of photo-thermoelasticity while considering the influence of moisture diffusivity. To derive the governing equations of the photo-thermo-elastic medium, Laplace’s transformation technique is used. These equations encompass the carrier density, elastic waves, moisture transport, heat conduction, and constitutive relationships. The fundamental physical parameters in the Laplace domain, such as mechanical stresses, thermal conditions, and plasma boundary conditions, are calculated. Numerical techniques are employed to invert the Laplace transform and obtain complete time-domain solutions for the various physical domains under investigation. The analysis takes into account reference moisture, nonlocality, magnetic field and rotation field. The effects of applied forces on displacement, moisture concentration, carrier density, stress resulting from forces, and temperature distribution are considered through graphical analysis.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3