Affiliation:
1. Discipline of Civil Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh, India
Abstract
The review of recent literature shows that the bending performances of transversely loaded laminated composite singly curved stiffened surfaces are not studied in detail using the geometrically nonlinear strains. The present paper aims to fill that void and proposes an isoparametric C° finite element formulation combining von-Karman nonlinearity and Sanders’ first approximation theory. The curved surfaces are simulated using nonlinear strains. The stiffeners are formulated using geometrically linear and nonlinear strains. The correctness of the proposed approach is confirmed through solution of benchmark problems. The relative performances of stiffened curved surfaces in terms of maximum transverse displacements are studied for industrially important parametric variations like boundary conditions, laminations, stacking sequences, and number, orientations, eccentricities, and depth of stiffeners. The results are critically discussed and it is concluded that the clamped 0°/90°/0° shell with curved stiffeners ( y-stiffener) located below the mid-surface shows the greatest bending stiffness. The nonlinear approach is essential for both shell and stiffener for correct prediction of the transverse displacements. The relatively simpler linear approach can be considered for single x-stiffener only.
Subject
Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献