The through-the-thickness measurement of residual stress in a thick welded steel compact tension specimen by the contour method

Author:

Richter-Trummer V1,de Castro P M S T1

Affiliation:

1. Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Abstract

Compact tension specimens are widely used for fatigue crack growth characterization. It is well known that when using this type of specimen for welded samples, residual stresses affect the crack growth behaviour, in particular, reducing the crack growth rate when the initial notch is parallel to the weldment. Several approaches have been used to characterize the residual stress field in welded compact tension specimens, including traditional destructive relaxation-based methods, as well as non-destructive diffraction-based techniques. The problem with the approaches presented so far is that the former do not provide through-the-thickness results, whereas the latter, although capable of providing through-the-thickness measurements, are only available in very few facilities worldwide. The interest in thick welded samples, where substantial through-the-thickness variations of residual stress fields are to be expected, leads to the need for a full-field characterization. In the present work, the residual stress perpendicular to the crack growth path in two welded steel compact tension specimens was measured by the contour method, an emerging destructive method. A full surface map of the residual stresses was obtained. This full field information on the residual stress distribution reveals substantial through-the-thickness variations. High compressive stresses were found in the centre of both specimens. The compact tension specimen with the crack plane in the centre of the weld bead presented slightly higher compressive residual stresses. The strong variation of the stress field, both in the longitudinal as well as in the through-the-thickness directions, emphasizes the need for full-field residual stress measurements for the correct interpretation of fatigue crack growth tests when using this type of specimen.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modelling and Simulation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3