Modeling of subsurface ceramic inclusions in metallic matrices

Author:

Pickard Andrew C1ORCID,Mills David E1

Affiliation:

1. Rolls-Royce Corporation, Indianapolis, IN, USA

Abstract

All engineering materials have the potential to contain inhomogeneities that can act as initiators for fatigue cracks during cyclic loading. One class of inhomogeneity that can occur as a result of the processes used to create metallic materials is a ceramic inclusion, typically resulting from the raw material contamination during the melting process. This article examines the predicted behavior of hard ceramic inclusions in a nickel-base superalloy metallic matrix. Compressive residual stresses are created in the inclusion during cool down from a stress-free state at high temperature. The influence of the proximity of the inclusion to the surface of the matrix material is examined, together with the impact of subsequent uniaxial loading on the stress field in the inclusion and in the surrounding material. The stress field in the ceramic inclusion is observed to transition from compressive to tensile as a function of the proximity of the inclusion to the surface of the material and the applied uniaxial stress field. For deep subsurface inclusions, the uniaxial stress field required to achieve a tensile stress in the inclusion is close to the yield stress of the material. The sensitivity of this critical stress to material cyclic hardening behavior and to the temperature difference between the stress-free state and the operating state is also explored. The significance of these modeling results is discussed in terms of the sensitivity of nickel-base superalloys to crack formation and growth from ceramic inclusions and hence the impact on probabilistic fatigue life assessments of the presence, location and size of the ceramic inclusions.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Reference9 articles.

1. Pickard AC. The application of three-dimensional finite element methods to fracture mechanics and fatigue life prediction. Birmingham: EMAS, 1986.

2. Fatigue testing of gas turbine components

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3